Category | Difficulty | Likes | Dislikes |
---|
algorithms | Hard (62.13%) | 2357 | - |
Tags
string
| dynamic-programming
Companies
Unknown
给你两个单词 word1
和 word2
, 请返回将 word1
转换成 word2
所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
示例 1:
1
2
3
4
5
6
| 输入:word1 = "horse", word2 = "ros"
输出:3
解释:
horse -> rorse (将 'h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')
|
示例 2:
1
2
3
4
5
6
7
8
| 输入:word1 = "intention", word2 = "execution"
输出:5
解释:
intention -> inention (删除 't')
inention -> enention (将 'i' 替换为 'e')
enention -> exention (将 'n' 替换为 'x')
exention -> exection (将 'n' 替换为 'c')
exection -> execution (插入 'u')
|
提示:
0 <= word1.length, word2.length <= 500
word1
和 word2
由小写英文字母组成
Discussion | Solution
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
| class Solution {
public:
/*
## 解题思路
* 动态规划
1. dp[i][j]: 表示word1[0i]和word2[0j]的最小编辑距离;
2. word1[i] == word2[j],w[i], w[j]相等,不用考虑,所以:
dp[i][j] = dp[i-1][j-1],
3. word1[i] != word2[j]:
dp[i][j] = min(dp[i-1][j], dp[i][j-1], dp[i-1][j-1]) + 1
其中:dp[i-1][j]表示删除word1[i]操作;
dp[i][j-1]表示删除word2[j]操作;
dp[i-1][j-1]表示替换word1[i]为word2[j]字符操作, 即操作替换后word1[i] == word2[j]
4. 初始条件:
dp[i][0] = i:
dp[0][j] = j;
*/
int minDistance(string word1, string word2) {
int m = word1.size();
int n = word2.size();
vector<vector<int>> dp(m+1, vector<int>(n+1, 0));
for(int i=0; i<=m; i++) {
dp[i][0] = i;
}
for(int j=0; j<=n; j++) {
dp[0][j] = j;
}
for(int i=1; i<=m; i++) {
for(int j=1; j<=n; j++) {
if(word1[i-1] == word2[j-1]) {
dp[i][j] = dp[i-1][j-1];
} else {
dp[i][j] = 1+min(dp[i-1][j-1], min(dp[i-1][j], dp[i][j-1]));
}
}
}
return dp[m][n];
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
| // @lc code=start
impl Solution {
/// ## 解题思路
/// - 动态规划
/// 1. 设 dp[i][j]: 表示word1[0i]和word2[0j]的最小编辑距离;
/// 2. 如果 word1[i] == word2[j], 则不用编辑, 有:
/// dp[i][j] = dp[i-1][j-1]
/// 3. 如果 word1[i] != word2[j], 则
/// dp[i][j] = min(dp[i-1][j], dp[i][j-1], dp[i-1][j-1]) + 1
/// 其中:
/// - dp[i-1][j]: 删除word1[i];
/// - dp[i][j-1]: 删除word2[j];
/// - dp[i-1][j-1]:
/// 4. 初始条件:
/// dp[i][0] = i
/// dp[0][j] = j
pub fn min_distance(word1: String, word2: String) -> i32 {
let mut dp = vec![vec![0_i32; word2.len() + 1]; word1.len() + 1];
for i in 1..=word1.len() {
dp[i][0] = i as i32;
}
for j in 1..=word2.len() {
dp[0][j] = j as i32;
}
for (i, w1) in word1.bytes().enumerate() {
for (j, w2) in word2.bytes().enumerate() {
if w1 == w2 {
dp[i + 1][j + 1] = dp[i][j];
} else {
dp[i + 1][j + 1] =
std::cmp::min(std::cmp::min(dp[i][j + 1], dp[i + 1][j]), dp[i][j]) + 1;
}
}
}
dp[word1.len()][word2.len()]
}
}
// @lc code=end
struct Solution;
|