区域和检索 - 数组可修改

区域和检索 - 数组可修改

CategoryDifficultyLikesDislikes
algorithmsMedium (52.17%)619-

Tags

binary-indexed-tree | segment-tree

Companies

Unknown

给你一个数组 nums ,请你完成两类查询。

  1. 其中一类查询要求 更新 数组 nums 下标对应的值
  2. 另一类查询要求返回数组 nums 中索引 left 和索引 right 之间( 包含 )的nums元素的  ,其中 left <= right

实现 NumArray 类:

  • NumArray(int[] nums) 用整数数组 nums 初始化对象
  • void update(int index, int val) 将 nums[index] 的值 更新 为 val
  • int sumRange(int left, int right) 返回数组 nums 中索引 left 和索引 right 之间( 包含 )的nums元素的  (即,nums[left] + nums[left + 1], ..., nums[right]

示例 1:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
输入:
["NumArray", "sumRange", "update", "sumRange"]
[[[1, 3, 5]], [0, 2], [1, 2], [0, 2]]
输出:
[null, 9, null, 8]

解释:
NumArray numArray = new NumArray([1, 3, 5]);
numArray.sumRange(0, 2); // 返回 1 + 3 + 5 = 9
numArray.update(1, 2);   // nums = [1,2,5]
numArray.sumRange(0, 2); // 返回 1 + 2 + 5 = 8

提示:

  • 1 <= nums.length <= 3 * 104
  • -100 <= nums[i] <= 100
  • 0 <= index < nums.length
  • -100 <= val <= 100
  • 0 <= left <= right < nums.length
  • 调用 update 和 sumRange 方法次数不大于 3 * 104 

Discussion | Solution

解法

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
// @lc code=start
/// 树状数组
struct NumArray {
    lowbit_sums: Vec<i32>, //按lowbit方式存储的sum数组
}

/**
 * `&self` means the method takes an immutable reference.
 * If you need a mutable reference, change it to `&mut self` instead.
 */
impl NumArray {
    /// 新建树状数组
    fn new(nums: Vec<i32>) -> Self {
        let mut na = NumArray {
            lowbit_sums: vec![0; nums.len()], // lowbit_sums数组
        };
        for i in 0..nums.len() {
            na.modify((i as i32), nums[i]);
        }

        na
    }

    /// 修改nums[i]值
    fn modify(&mut self, i: i32, diff: i32) {
        let mut i = i + 1; // 树状数组下标=原数组下标+1
        //自底向上修改树状数组相关节点
        while i <= self.lowbit_sums.len() as i32 {
            self.lowbit_sums[(i-1) as usize] += diff;
            i += NumArray::lowbit(i); 
        }
    }

    /// 查询前缀和sum(nums[..i]), 区间范围: [0, i)
    fn get_prefix_sum(&self, i: i32) -> i32 {
        let mut res = 0;
        let mut i = i + 1; // 树状数组下标=原数组下标+1
        //自顶向下依次计算树状数组节点和
        while i > 0 {
            res += self.lowbit_sums[(i-1) as usize];
            i -= NumArray::lowbit(i); 
        }

        res
    }

    /// 查询nums[i]
    fn get(&self, i: i32) -> i32 {
        self.get_prefix_sum(i) - self.get_prefix_sum(i-1)
    }

    /// 更新nums[index]值
    fn update(&mut self, i: i32, val: i32) {
        let diff = val - self.get(i);
        self.modify(i, diff)
    }

    /// 查询区间和sum(nums[left..right]), [left, right)
    fn sum_range(&self, left: i32, right: i32) -> i32 {
        // 区间和转化为前缀和之差
        self.get_prefix_sum(right) - self.get_prefix_sum(left-1)
    }

    /// 截取x的最低位1开始后的尾部
    fn lowbit(x: i32) -> i32 {
        x & -x
    }
}

/**
 * Your NumArray object will be instantiated and called as such:
 * let obj = NumArray::new(nums);
 * obj.update(index, val);
 * let ret_2: i32 = obj.sum_range(left, right);
 */
// @lc code=end
updatedupdated2024-12-152024-12-15