求根节点到叶节点数字之和

求根节点到叶节点数字之和

CategoryDifficultyLikesDislikes
algorithmsMedium (70.09%)663-
Tags

tree | depth-first-search

Companies

Unknown

给你一个二叉树的根节点 root ,树中每个节点都存放有一个 09 之间的数字。每条从根节点到叶节点的路径都代表一个数字:

  • 例如,从根节点到叶节点的路径 1 -> 2 -> 3 表示数字 123

计算从根节点到叶节点生成的 所有数字之和

叶节点 是指没有子节点的节点。

示例 1:

1
2
3
4
5
6
输入:root = [1,2,3]
输出:25
解释:
从根到叶子节点路径 1->2 代表数字 12
从根到叶子节点路径 1->3 代表数字 13
因此,数字总和 = 12 + 13 = 25

示例 2:

1
2
3
4
5
6
7
输入:root = [4,9,0,5,1]
输出:1026
解释:
从根到叶子节点路径 4->9->5 代表数字 495
从根到叶子节点路径 4->9->1 代表数字 491
从根到叶子节点路径 4->0 代表数字 40
因此,数字总和 = 495 + 491 + 40 = 1026

提示:

  • 树中节点的数目在范围 [1, 1000]
  • 0 <= Node.val <= 9
  • 树的深度不超过 10

Discussion | Solution

给你一个二叉树的根节点 root ,树中每个节点都存放有一个 09 之间的数字。每条从根节点到叶节点的路径都代表一个数字:

  • 例如,从根节点到叶节点的路径 1 -> 2 -> 3 表示数字 123

计算从根节点到叶节点生成的 所有数字之和

叶节点 是指没有子节点的节点。

示例 1:

1
2
3
4
5
6
输入:root = [1,2,3]
输出:25
解释:
从根到叶子节点路径 1->2 代表数字 12
从根到叶子节点路径 1->3 代表数字 13
因此,数字总和 = 12 + 13 = 25

示例 2:

1
2
3
4
5
6
7
输入:root = [4,9,0,5,1]
输出:1026
解释:
从根到叶子节点路径 4->9->5 代表数字 495
从根到叶子节点路径 4->9->1 代表数字 491
从根到叶子节点路径 4->0 代表数字 40
因此,数字总和 = 495 + 491 + 40 = 1026

提示:

  • 树中节点的数目在范围 [1, 1000]
  • 0 <= Node.val <= 9
  • 树的深度不超过 10

Discussion | Solution

解法

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
// @lc code=start
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
//   pub val: i32,
//   pub left: Option<Rc<RefCell<TreeNode>>>,
//   pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
//   #[inline]
//   pub fn new(val: i32) -> Self {
//     TreeNode {
//       val,
//       left: None,
//       right: None
//     }
//   }
// }
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
    /// ##
    pub fn sum_numbers(root: Option<Rc<RefCell<TreeNode>>>) -> i32 {
        type TreeNodeOpt = Option<Rc<RefCell<TreeNode>>>;

        // 中序遍历, 递归计算各路径和
        fn inorder(root: &TreeNodeOpt, path_sum: i32, res: &mut i32) {
            match root {
                None => {}
                Some(node) => {
                    let n = node.borrow();
                    match (&n.left, &n.right) {
                        (None, None) => {
                            *res += path_sum * 10 + n.val;
                        }
                        _ => {
                            inorder(&n.left, path_sum * 10 + n.val, res);
                            inorder(&n.right, path_sum * 10 + n.val, res);
                        }
                    }
                }
            }
        }

        let mut res = 0;
        inorder(&root, 0, &mut res);

        res
    }
}
// @lc code=end

updatedupdated2024-12-152024-12-15