1.1 安装Rust环境
安装Rust:确保已安装Rust编程语言。可以使用rustup工具进行安装和更新。
1
2
3
| # 安装 rustup
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
source ~/.cargo/env
|
运行
安装依赖库:使用Cargo管理依赖库。
1
2
3
4
| cargo new novel_finetune
cd novel_finetune
cargo add torch
cargo add rust-tensor
|
租用GPU卡:如果本地没有足够的GPU资源,可以租用云GPU卡(如DeepLearn账号)。
注册并登录DeepLearn账号,领取赠额。
选择4090或3090规格的GPU卡,确保显存至少24G。
数据格式化:将小说文本分割成适合模型训练的小段落。可以使用Python脚本进行处理。
1
2
3
4
5
6
7
8
9
10
11
| import re
def split_text_by_punctuation(text):
sentences = re.split(r'。(|!|?|;|:|,|…', text)
return sentences
with open('novel.txt', 'r', encoding='utf-8') as file:
text = file.read()
sentences = split_text_by_punctuation(text)
with open('novel_sentences.json', 'w', encoding='utf-8') as json_file:
json.dump(sentences, json_file, ensure_ascii=False, indent=4)
|
加载数据:使用Rust读取JSON文件并加载数据。
1
2
3
4
5
6
7
8
9
10
11
| use std::fs::File;
use std::io::Read;
use serde_json;
fn load_data() -> Vec<String> {
let mut file = File::open("novel_sentences.json").expect("Failed to open file");
let mut contents = String::new();
file.read_to_string(&mut contents).expect("Failed to read file");
let Vec<String> = serde_json::from_str(&contents).expect("Failed to parse JSON");
data
}
|
选择预训练模型:选择适合文本生成的预训练模型,如GPT-3或T5。
模型微调:使用LoRA(Low-Rank Adaptation)或Flash Attention等技术进行微调。
设置训练参数:
1
2
3
4
| export OMP_NUM_THREADS=1
export MKL_NUM_THREADS=1
export CUDA_VISIBLE_DEVICES=0
export PyTorch_CUDA:%CUDA_VISIBLE_DEVICES%
|
训练代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
| use torch::nn::{Module, Linear};
use torch::Tensor;
use torch::nn:: functional as F;
use torch::nn::module::Module;
struct FinetuneModel {
base_model: Box<dyn Module>,
adapter: Linear,
}
impl FinetuneModel {
fn new(base_model: Box<dyn Module>, adapter_dim: usize) -> Self {
FinetuneModel {
base_model,
adapter: Linear::new(base_model.output_dim(), adapter_dim),
}
}
fn forward(&self, x: &Tensor) -> Tensor {
let x = self.base_model.forward(x);
let x = self(adapter);
x
}
}
|
训练数据:将小说句子作为输入,生成下一句作为输出。
训练代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
| fn train(model: &mut FinetuneModel, optimizer: &mut Optimizer, epochs: usize) {
for epoch in 0..epochs {
for batch in &train_data {
let input = batch.input.to(device);
let target = batch.target.to(device);
let output = model.forward(&input);
let loss = F.cross_entropy(&output, &target);
optimizer.zero_grad();
loss.backward();
optimizer.step();
}
}
}
|
4.2 评估模型
评估指标:使用准确率、困惑度等指标评估模型性能。
评估代码:
1
2
3
4
5
6
7
8
9
10
11
| fn evaluate(model: &FinetuneModel, &Vec<Batch>) -> f64 {
let mut total_loss = 0.0;
for batch in data {
let input = batch.input.to(device);
let target = batch.target.to(device);
let output = model.forward(&input);
let loss = F.cross_entropy(&output, &target);
total_loss += loss.item();
}
total_loss / data.len() as f64
}
|
导出模型:将训练好的模型导出为ONNX或其他格式。
1
| torchscript --script model.py --extra-args "-o model.onnx"
|
部署代码:使用Rust编写部署代码,加载模型并进行推理。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
| use torch::nn::functional as F;
use torch::Tensor;
fn deploy(model_path: &str) -> FinetuneModel {
let model = FinetuneModel::load(model_path);
model.eval();
model
}
fn generate_text(model: &FinetuneModel, prompt: &str) -> String {
let input_tensor = Tensor::from_str(prompt).to(device);
let output = model.forward(&input_tensor);
let generated_text = output.argmax(dim=1).to_str();
generated_text.to_string()
}
|
目录结构
1
2
3
4
5
6
7
8
| novel_finetune/
├── Cargo.toml
├── src/
│ ├── main.rs
│ ├── model.rs
│ ├── data.rs
│ └── train.rs
└── novel_sentences.json
|
文件内容
Cargo.toml:```
[package]
name = "novel_finetune"
version = "0.1.0"
authors = ["Your Name your.email@example.com"]
edition = "2018"
[dependencies]
torch = "0.5"
rust-tensor = "0.24"
serde_json = "1.0"
src/main.rs:
mod model;
mod data;
mod train;
1
2
3
4
5
6
| fn main() {
let model = train::train();
let prompt = "这是小说的开头";
let generated_text = model::generate_text(&model, prompt);
println!("Generated text: {}", generated_text);
}
|
src/model.rs:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
| use torch::nn::{Module, Linear};
use torch::Tensor;
struct FinetuneModel {
base_model: Box<dyn Module>,
adapter: Linear,
}
impl FinetuneModel {
fn new(base_model: Box<dyn Module>, adapter_dim: usize) -> Self {
FinetuneModel {
base_model,
adapter: Linear::new(base_model.output_dim(), adapter_dim),
}
}
fn forward(&self, x: &Tensor) -> Tensor {
let x = self.base_model.forward(x);
let x = self(adapter);
x
}
}
|
src/data.rs:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
| use std::fs::File;
use std::io::Read;
use serde_json;
fn load_data() -> Vec<String> {
// Load data from JSON file
}
src/train.rs:
use torch::nn::{Module, Linear};
use torch::Tensor;
use torch::nn::functional as F;
use torch::nn::module::Module;
struct FinetuneModel {
base_model: Box<dyn Module>,
adapter: Linear,
}
impl FinetuneModel {
fn new(base_model: Box<dyn Module>, adapter_dim: usize) -> Self {
FinetuneModel {
base_model,
adapter: Linear::new(base_model.output_dim(), adapter_dim),
}
}
fn forward(&self, x: &Tensor) -> Tensor {
let x = self.base_model.forward(x);
let x = self(adapter);
x
}
}
fn train(model: &mut FinetuneModel, optimizer: &mut Optimizer, epochs: usize) {
// Training code
}
fn evaluate(model: &FinetuneModel, &Vec<Batch>) -> f64 {
// Evaluation code
}
|
通过上述步骤,可以在个人PC上使用Rust对一本三百多万字的网络小说进行大模型微调。整个过程包括环境准备、数据预处理、模型选择与微调、训练与评估以及模型部署