查找算法

查找算法

简介

查找算法是计算机科学中最基本的算法之一,其用途在查找给定序列中的特定值。

二分查找

  • 二分查找法是对有序序列的快速查找方法,其时间复杂度为$O(log(n))$级别;

  • 其主要思想:在有序序列中每次比较待查找序列中的中间值和目标值的大小,从而根据有序序列特点,将其中一半排除,从而对数级减小待查询序列的范围;

  • 二分查找法的前提是序列已经有序;

算法步骤

复杂度分析

最差O(logn)O(log⁡n)
最好O(1)O(1)
平均O(logn)O(log⁡n)
最坏空间O(1)

代码

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
def binary_search(self, A, target):
    '''
    二分查找法
    '''
    # 检查输入
    if len(A) < 1 or target < A[0] or target > A[-1]:
        return -1

    l, r = 0, len(A)-1
    while l < r:                #退出条件,注意不要用l == r判断
        m = (l +  r - l )) >> 1  #计算二分点, 要防止溢出
        if A[m] == target:      #find
            return m
        elif target < A[m]:     # l....target....m............r
            r = m               # 右边界直接移动
        else:
            l = m + 1           # 左边界移动时要+1
    return -1

插值查找

  • 插值查找法是二分查找法的一种变种,
项目复杂度
Worst$O(n)$
BestO(1)
AverageO(n)
AverageO(log⁡log⁡n) on uniform distributed data
Worst spaceO(1)
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
pub fn interpolation_search(
    arr: &[i32],
    target: &i32,
) -> Result<usize, usize> {
    // 1. Handle empty sequence.
    if arr.is_empty() {
        return Err(0)
    }

    // 2. Setup variable storing iteration informaion.
    let mut hi = arr.len() - 1;
    let mut lo = 0_usize;

    let mut interpolant = 0_usize;

    // 3. Main loop to calculate the interpolant.
    loop {
        let lo_val = arr[lo];
        let hi_val = arr[hi];

        // 3.1. Three condition to exit the loop
        if hi <= lo || *target < lo_val || *target > hi_val {
            break
        }

        // 3.2. The linear interpolation part
        let offset = (*target - lo_val) * (hi - lo) as i32 / (hi_val - lo_val);
        interpolant = lo + offset as usize;

        let mid_val = arr[interpolant];

        // 3.3. Comparison between the interpolant and targert value.
        if mid_val > *target {
            hi = interpolant - 1;
        } else if mid_val < *target {
            lo = interpolant + 1;
        } else {
            break
        }
    }

    // 4. Determine whether the returning interpolant are equal to target value.
    if *target > arr[hi] {
        Err(hi + 1)
    } else if *target < arr[lo] {
        Err(lo)
    } else {
        Ok(interpolant)
    }
}

指数查找

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
use crate::searching::binary_search;

pub fn exponential_search<T>(arr: &[T], target: &T) -> Result<usize, usize>
    where T: PartialOrd
{
    // 1. Handle empty scenario.
    let size = arr.len();
    if size == 0 {
        return Err(0);
    }

    // 2. Determine searching boundaries.
    let mut hi = 1_usize; // Upper bound.
    while hi < size && arr[hi] < *target {
        hi <<= 1;
    }
    let lo = hi >> 1; // Lower bound.

    // 3. Do binary search.
    binary_search(&arr[lo..size.min(hi + 1)], target)
        .map(|index| lo + index)
        .map_err(|index| lo + index)
}

参考

  1. 線性搜尋 Linear search - Rust Algorithm Club
updatedupdated2024-12-152024-12-15